Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Find the volume of the given solid.

(b) Express the volume obtained in part (a) in terms of height of the ring.

Short Answer

Expert verified

(a) The volume of the given solid is \(\frac{{4\pi }}{3}{\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\).

(b) The volume of the given solid is \(\frac{\pi }{6}{h^3}\)

Step by step solution

01

Formula used

(a)

If\(f\)is a polar rectangle\(R\)given by\(0 \le a \le r \le b,\alpha \le \theta \le \beta \), where\(0 \le \beta - \alpha \le 2\pi \), then,

If\(g(x)\)is the function of\(x\)and\(h(y)\)is the function of\(y\)then,

\(\int_a^b {\int_c^d g } (x)h(y)dydx = \int_a^b g (x)dx\int_c^d h (y)dy.........(2)\)

02

Substitute \(x = r\cos \theta \) and \(y = r\sin \theta \) in the equation (1) and obtain the required volume.

Integrate the function with respect to\(r\)and\(\theta \)by using the equation (2).

Let\(t = {r^2}\).

Then,\(dt = 2rdr\).

Obtain the required volume as follows.

\(\begin{aligned}{l}2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = \frac{2}{2}\int_0^{2\pi } d \theta \int_{{r_1}}^{{r_2}} 2 r\sqrt {r_2^2 - {r^2}} dr\\ = \int_0^{2\pi } d \theta \int_{{r_1}}^{{r_2}} {\sqrt {r_2^2 - t} } dt\\ = (\theta )_0^{2\pi }\left( {\frac{{ - 2{{\left( {r_2^2 - t} \right)}^{\frac{3}{2}}}}}{3}} \right)_{{r_1}}^{{r_2}}\\ = (\theta )_0^{2\pi }\left( {\frac{{ - 2{{\left( {r_2^2 - {r^2}} \right)}^{\frac{3}{2}}}}}{3}} \right)_{{r_1}}^{{r_2}}\end{aligned}\)

03

Apply the limit of \(r\) and \(\theta \)

\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = (2\pi - 0)\left( {\frac{{ - 2{{\left( {r_2^2 - {{\left( {{r_2}} \right)}^2}} \right)}^{\frac{3}{2}}}}}{3} - \frac{{\left( { - 2{{\left( {r_2^2 - {{\left( {{r_1}} \right)}^2}} \right)}^{\frac{3}{2}}}} \right)}}{3}} \right)\)

\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = (2\pi )\left( {\frac{{ - 2{{(0)}^{\frac{3}{2}}}}}{3} + \frac{{2{{\left( {r_2^2 - r_1^2} \right)}^{\frac{3}{2}}}}}{3}} \right)\)

\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = \frac{{2\pi }}{3}\left( {0 + 2{{\left( {r_2^2 - r_1^2} \right)}^{\frac{3}{2}}}} \right)\)

\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = \frac{{4\pi }}{3}{\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\)

Thus, the volume of the given solid is \(\frac{{4\pi }}{3}{\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\).

04

Formula used(b)

Pythagoras theorem: In a right-angled triangle, square of the hypotenuse is equal to square of the sum of other two sides of the triangle.

05

Draw the outline sketch of the required region

06

Use Pythagoras theorem and simplify the equation

\(\begin{aligned}{l}{\left( {\frac{h}{2}} \right)^2} = r_2^2 - r_1^2\\\frac{h}{2} = \sqrt {r_2^2 - r_1^2} \\\frac{{{h^3}}}{8} = {\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\end{aligned}\)

Hence, the volume becomes,

Thus, the volume of the given solid is \(\frac{\pi }{6}{h^3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free