\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = (2\pi - 0)\left( {\frac{{ - 2{{\left( {r_2^2 - {{\left( {{r_2}} \right)}^2}} \right)}^{\frac{3}{2}}}}}{3} - \frac{{\left( { - 2{{\left( {r_2^2 - {{\left( {{r_1}} \right)}^2}} \right)}^{\frac{3}{2}}}} \right)}}{3}} \right)\)
\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = (2\pi )\left( {\frac{{ - 2{{(0)}^{\frac{3}{2}}}}}{3} + \frac{{2{{\left( {r_2^2 - r_1^2} \right)}^{\frac{3}{2}}}}}{3}} \right)\)
\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = \frac{{2\pi }}{3}\left( {0 + 2{{\left( {r_2^2 - r_1^2} \right)}^{\frac{3}{2}}}} \right)\)
\(2\int_0^{2\pi } {\int_{{r_1}}^{{r_2}} r } \sqrt {r_2^2 - {r^2}} drd\theta = \frac{{4\pi }}{3}{\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\)
Thus, the volume of the given solid is \(\frac{{4\pi }}{3}{\left( {r_2^2 - r_1^2} \right)^{\frac{3}{2}}}\).