Chapter 12: Q1RE (page 751)
What does the Midpoint Rule for double integrals say?
Short Answer
The required answer is \(\iint_{R}{{}}f(x,y)dA=\sum\limits_{i=1}^{m}{{}}\sum\limits_{j=1}^{n}{{}}fxi,yj\)
Chapter 12: Q1RE (page 751)
What does the Midpoint Rule for double integrals say?
The required answer is \(\iint_{R}{{}}f(x,y)dA=\sum\limits_{i=1}^{m}{{}}\sum\limits_{j=1}^{n}{{}}fxi,yj\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the solid whose volume is given by the integrated integral
\(\int\limits_0^1 {\int\limits_0^1 {\left( {4 - x - 2y} \right)} } dxdy\)
Calculate the iterated integral \(\int\limits_0^1 {\int\limits_0^3 {{e^{x + 3y}}} } dxdy\)
Let \({\rm{E}}\) be the solid in the first octant bounded by the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and the planes \({\rm{y = z, x = 0}}\)and \({\rm{z = 0}}\)with the density function \({\rm{\rho (x,y,z) = 1 + x + y + z}}\). Use a computer algebra system to find the exact values of the following quantities for \({\rm{E}}\).
Use your CAS to compute iterated integrals. \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \) and . \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \). Explain with the help of Fubiniโs theorem.
\(\int\limits_0^8 {\int\limits_{\sqrt[3]{y}}^2 {{e^{{x^4}}}dx} } dy\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.