Chapter 12: Q19E (page 750)
Question: EvaluatedV, Where B is the ball with center the origin and radius 5.
Short Answer
The value of the given triple integral is \(\frac{{{\rm{312500\pi }}}}{{\rm{7}}}\).
Chapter 12: Q19E (page 750)
Question: EvaluatedV, Where B is the ball with center the origin and radius 5.
The value of the given triple integral is \(\frac{{{\rm{312500\pi }}}}{{\rm{7}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the solid that lies under the plane \(4x + 6y - 2z + 15 = 0\) and above the triangle
\(R = \left\{ {\left( {x,y} \right)| - 1 \le x \le 2, - 1 \le y \le 1} \right\}\)
Calculate the integrated integral \(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } \)
Evaluate the double integral \(\iint\limits_D {\left( {x{y^2}} \right)dA}\)D is enclosed by\(x = 0, x = \sqrt {1 - {y^2}} \)
Use your CAS to compute iterated integrals. \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dydx} } \) and . \(\int\limits_0^1 {\int\limits_0^1 {\frac{{x - y}}{{{{(x + y)}^3}}}dxdy} } \). Explain with the help of Fubini’s theorem.
\(\int\limits_0^1 {\int\limits_x^1 {{e^{{x \mathord{\left/{\vphantom {x y}} \right.} y}}}dydx} }\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.