Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the double integral \(\iint\limits_D {\left( {2x - y} \right)dA}\)D is bounded by the circle with the centre origin and radius 2.

Short Answer

Expert verified

The solution of the given integral can be:

\(\iint\limits_D {\left( {2x - y} \right)dA} = 0\)

Step by step solution

01

Find the limits

Consider the integral

\(\iint\limits_D {\left( {2x - y} \right)dA}\)

D is bounded by the circle with the centre origin and radius 2.

So we can write,

\(\begin{array}{l}{\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} = {2^2}\\{x^2} + {y^2} = 4\\x = \pm \sqrt {4 - {y^2}} \end{array}\)

Sketch of the region bounded by the circle with centre the origin and radius 2 is shown below:

The region D can be expressed as follows:

\(D = \{ (x,y)| - 2 \le y \le 2, - \sqrt {4 - {y^2}} \le x \le \sqrt {4 - {y^2}} \} \)

Rewrite the double integral as:

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\int\limits_{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} } {\left( {2x - y} \right)} } dxdy\)

02

Step 2:Evaluate the integral

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\int\limits_{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} } {\left( {2x - y} \right)} } dxdy\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\left[ {{x^2} - xy} \right]_{ - \sqrt {4 - {y^2}} }^{\sqrt {4 - {y^2}} }} dy\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\left[ {\left( {4 - {y^2} - y\sqrt {4 - {y^2}} } \right) - \left( {4 - {y^2} + y\sqrt {4 - {y^2}} } \right)} \right]} dy\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\left[ {\left( {4 - {y^2}} \right) - y\sqrt {4 - {y^2}} - \left( {4 - {y^2}} \right) - y\sqrt {4 - {y^2}} } \right]} dy\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \int\limits_{ - 2}^2 {\left[ { - 2y\sqrt {4 - {y^2}} } \right]} dy\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \frac{2}{3}\left[ {{{\left( {4 - {y^2}} \right)}^{\frac{3}{2}}}} \right]_{ - 2}^2\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = \frac{2}{3}\left[ {{{\left( {4 - 4} \right)}^{\frac{3}{2}}} - {{\left( {4 - 4} \right)}^{\frac{3}{2}}}} \right]_{ - 2}^2\)

\(\iint\limits_D {\left( {2x - y} \right)dA} = 0\)

Hence the required value is:\(\iint\limits_D {\left( {2x - y} \right)dA} = 0\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free