\(I = - \int\limits_0^{2\pi } {\int\limits_0^a {{{\left( {{a^2} - {r^2}} \right)}^{\frac{1}{2}}} \cdot \left( { - 2r} \right)drd\theta } } \)
Integrating on \(r\) we get,
\(\begin{aligned}{l}I = \int\limits_0^{2\pi } {\left( {\frac{{{a^2} - {r^2}}}{{\frac{1}{2} + 1}}} \right)} _0^ad\theta \\ = \int\limits_0^{2\pi } {\left( {\frac{2}{3}{{\left( {{a^2} - {r^2}} \right)}^{\frac{3}{2}}}} \right)} _0^ad\theta \\ = \int\limits_0^{2\pi } {\left( {\frac{2}{3}{{\left( {{a^2} - {a^2}} \right)}^{\frac{3}{2}}} - \frac{2}{3}{{\left( {{a^2} - 0} \right)}^{\frac{3}{2}}}} \right)} d\theta \\ = \frac{2}{3}\int\limits_0^{2\pi } {{a^3}} d\theta \end{aligned}\)
Integrating on \(\theta \) we get,
\(\begin{aligned}{l}I = \frac{2}{3}{a^3}\left( {\left( \theta \right)} \right)_0^{2\pi }\\ = \frac{2}{3}{a^3}\left( {2\pi - 0} \right)\\ = \frac{{4\pi {a^3}}}{3}\end{aligned}\)
Therefore, volume of the given solid is \(\frac{{4\pi {a^3}}}{3}\).