Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use polar coordinates to find the volume of the given solid.

A sphere of radius\({\rm{a}}\).

Short Answer

Expert verified

The volume of the given solid is \(\frac{{4\pi {a^3}}}{3}\).

Step by step solution

01

Convert into polar coordinates.

In polar coordinates\(x = r\cos \theta \),\(y = r\sin \theta \).

\( \Rightarrow {x^2} + {y^2} = {r^2}\)

The equation for sphere with radius a and centre origin is

\(\begin{aligned}{l}{x^2} + {y^2} + {z^2} = {a^2}\\ \Rightarrow {z^2} = {a^2} - \left( {{x^2} + {y^2}} \right)\\ \Rightarrow z = \sqrt {{a^2} - \left( {{x^2} + {y^2}} \right)} \\ \Rightarrow z = \sqrt {{a^2} - {r^2}} \end{aligned}\)

The region of integration is a polar rectangle described as \(0 \le \theta \le 2\pi \)and\(0 \le r \le a\).

02

Compute the volume.

The volume (V) will be,

03

Evaluate the integral.

\(I = - \int\limits_0^{2\pi } {\int\limits_0^a {{{\left( {{a^2} - {r^2}} \right)}^{\frac{1}{2}}} \cdot \left( { - 2r} \right)drd\theta } } \)

Integrating on \(r\) we get,

\(\begin{aligned}{l}I = \int\limits_0^{2\pi } {\left( {\frac{{{a^2} - {r^2}}}{{\frac{1}{2} + 1}}} \right)} _0^ad\theta \\ = \int\limits_0^{2\pi } {\left( {\frac{2}{3}{{\left( {{a^2} - {r^2}} \right)}^{\frac{3}{2}}}} \right)} _0^ad\theta \\ = \int\limits_0^{2\pi } {\left( {\frac{2}{3}{{\left( {{a^2} - {a^2}} \right)}^{\frac{3}{2}}} - \frac{2}{3}{{\left( {{a^2} - 0} \right)}^{\frac{3}{2}}}} \right)} d\theta \\ = \frac{2}{3}\int\limits_0^{2\pi } {{a^3}} d\theta \end{aligned}\)

Integrating on \(\theta \) we get,

\(\begin{aligned}{l}I = \frac{2}{3}{a^3}\left( {\left( \theta \right)} \right)_0^{2\pi }\\ = \frac{2}{3}{a^3}\left( {2\pi - 0} \right)\\ = \frac{{4\pi {a^3}}}{3}\end{aligned}\)

Therefore, volume of the given solid is \(\frac{{4\pi {a^3}}}{3}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free