\(\begin{array}{l}I = \int\limits_0^1 {\int\limits_0^{{x^2}} {x\cos ydydx} } \\I = \int\limits_0^1 {x\left( {\sin y} \right)_0^{{x^2}}dx} \\I = \int\limits_0^1 {x\left( {\sin {x^2} - 0} \right)dx} \\I = \int\limits_0^1 {x\left( {\sin {x^2}} \right)dx} \\I = - \frac{1}{2}\left( {\cos {x^2}} \right)_0^1\\I = - \frac{1}{2}\left( {\cos 1 - \cos 0} \right)\\I = - \frac{1}{2} - \frac{{\cos (1)}}{2}\end{array}\)
Therefore, The solution of the given double integral can be given as:
\(\iint\limits_D {x\cos ydA} = \frac{1}{2} - \frac{{\cos (1)}}{2}\)