Chapter 12: Q15E (page 699)
Calculate the integrated integral \(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } \)
Short Answer
\(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } = 18\)
Chapter 12: Q15E (page 699)
Calculate the integrated integral \(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } \)
\(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } = 18\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the solid whose volume is given by the integrated integral.
\(\int\limits_0^1 {\int\limits_0^1 {\left( {2 - {x^2} - {y^2}} \right)dydx} } \)
Evaluate \(\iiint_{\text{E}}{{{\text{x}}^{\text{2}}}}\text{dV}\), where \({\rm{E}}\) is the solid that lies within the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\), above the plane \({\rm{z = 0}}\), and below the cone \({{\rm{z}}^{\rm{2}}}{\rm{ = 4}}{{\rm{x}}^{\rm{2}}}{\rm{ + 4}}{{\rm{y}}^{\rm{2}}}\).Use cylindrical coordinates.
Find the volume of the solid that is enclosed by the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \) and the sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 2}}\).Use cylindrical coordinates.
Calculate the double integral
\(\int {\int\limits_r {x\sin \left( {x + y} \right)dA,R = \left( {0,\frac{\pi }{6}} \right)X\left( {0,\frac{\pi }{3}} \right)} } \)
Calculate the iterated integral\(\int\limits_1^4 {\int\limits_1^2 {\left( {\frac{x}{y} + \frac{y}{x}} \right)} } dydx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.