\(\begin{array}{l}{\rm{u = ln}}\left( {\rm{y}} \right) & {\rm{so}}\,\,\,\frac{{{\rm{du}}}}{{{\rm{dy}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{y}}} & {\rm{du = }}\left( {\frac{{\rm{1}}}{{\rm{y}}}} \right){\rm{dy}}\\{\rm{limit}}\,{\rm{will}}\,{\rm{be}} & {\rm{ln}}\left( {\rm{5}} \right){\rm{iy = 5}}\\\int_{\rm{1}}^{\rm{3}} {\int_{\rm{1}}^{\rm{5}} {\frac{{{\rm{lny}}}}{{{\rm{xy}}}}{\rm{dydx = }}\int_{\rm{1}}^{\rm{3}} {\int_{\rm{1}}^{\rm{5}} {\frac{{\rm{u}}}{{\rm{x}}}{\rm{dudx}}} } } } \\ & {\rm{ = }}\int_{\rm{1}}^{\rm{3}} {\left( {\frac{{\rm{1}}}{{\rm{x}}}\int_{\rm{0}}^{{\rm{ln}}\left( {\rm{5}} \right)} {{\rm{udu}}} } \right){\rm{dx}}} \\ & {\rm{ = }}\int_{\rm{1}}^{\rm{3}} {\left( {\frac{{\rm{1}}}{{\rm{x}}}{{\left( {\frac{{{{\rm{u}}^{\rm{2}}}}}{{\rm{2}}}} \right)}^{{\rm{ln}}\left( {\rm{5}} \right)}}} \right){\rm{dx}}} \\ & {\rm{ = }}\int_{\rm{1}}^{\rm{3}} {\left( {\frac{{\rm{1}}}{{\rm{x}}}\left( {\frac{{{\rm{ln}}{{\left( {\rm{5}} \right)}^{\rm{2}}}}}{{\rm{2}}}{\rm{ - }}\frac{{{{\rm{0}}^{\rm{2}}}}}{{\rm{2}}}} \right)} \right)} {\rm{dx}}\\ & {\rm{ = }}\int_{\rm{1}}^{\rm{3}} {\left( {\frac{{\rm{1}}}{{\rm{x}}}\left( {\frac{{{\rm{l}}{{\rm{n}}^{\rm{2}}}\left( {\rm{5}} \right)}}{{\rm{2}}}} \right)} \right){\rm{dx}}} \\ & {\rm{ = }}\frac{{{\rm{l}}{{\rm{n}}^{\rm{2}}}\left( {\rm{5}} \right)}}{{\rm{2}}}\int_{\rm{1}}^{\rm{3}} {\frac{{\rm{1}}}{{\rm{x}}}{\rm{dx}}} \end{array}\)