Chapter 12: Q13E (page 729)
where\({\rm{T}}\)is the solid tetrahedron with vertices\({\rm{(0,0,0),(1,0,0),(0,1,0), and (0,0,1)}}\).
Short Answer
The required answer is\(\frac{{\rm{1}}}{{{\rm{60}}}}\).
Chapter 12: Q13E (page 729)
where\({\rm{T}}\)is the solid tetrahedron with vertices\({\rm{(0,0,0),(1,0,0),(0,1,0), and (0,0,1)}}\).
The required answer is\(\frac{{\rm{1}}}{{{\rm{60}}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the region of integration and change the order of integration\(\int\limits_0^1 {\int\limits_0^y {f(x,y)dx} dy} \)
Identify the surface whose equation is given.
\({\rm{2}}{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^2}{\rm{ = 1}}\)
A 20-ft-by-30-ft Swimming pool is filled with water. The depth is measured at 5-foot intervals, starting at one corner of the pool, and the values are recorded in the table. Estimate the volume of the water in the pool.
\(\int\limits_{{\rm{\pi /4}}}^{{\rm{3\pi /4}}} {\int\limits_{\rm{1}}^{\rm{2}} {{\rm{r dr d\theta }}} } \)
Find the average value of the function\({\rm{f(x,y,z) = }}{{\rm{x}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{\rm{z}}\)over the region enclosed by the parabolic\({\rm{z = 1 - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}\)and the plane z=0.
What do you think about this solution?
We value your feedback to improve our textbook solutions.