Chapter 12: Q13E (page 699)
Calculate the iterated integral.
\(\int {_0^2} \int {_0^4{y^3}{e^{2x}}dydx} \)
Short Answer
Calculating the integral we get , \(\int_0^2 {\int_0^4 {{y^3}{e^{2x}}dydx = 32\left( {{e^4} - 1} \right)} } \)
Chapter 12: Q13E (page 699)
Calculate the iterated integral.
\(\int {_0^2} \int {_0^4{y^3}{e^{2x}}dydx} \)
Calculating the integral we get , \(\int_0^2 {\int_0^4 {{y^3}{e^{2x}}dydx = 32\left( {{e^4} - 1} \right)} } \)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\int\limits_0^1 {\int\limits_{\arcsin y}^{{\raise0.7ex\hbox{\(\pi \)} \!\mathord{\left/ {\vphantom{\pi 2}}\right.}\!\lower0.7ex\hbox{\(2\)}}} {\cos x\sqrt {1 + {{\cos }^2}x} dxdy} } \).
Evaluate the double integral \(\iint\limits_D {\left( {x{y^2}} \right)dA}\)D is enclosed by\(x = 0, x = \sqrt {1 - {y^2}} \)
Evaluate the double integral \(\iint\limits_D {xcosydA}\)D is bounded by\(y = 0,y = {x^2},x = 1\)
Evaluate \(\iint\limits_D {\frac{y}{{1 + {x^5}}}dA,D = \{ (x,y)/0 \leqslant x \leqslant 1,0 \leqslant y \leqslant {x^2}\} }\)
A cylindrical shell is \({\rm{20cm}}\) long; with inner radius \({\rm{6cm}}\) and outer radius \({\rm{7cm}}\) write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system concerning the shell.
What do you think about this solution?
We value your feedback to improve our textbook solutions.