The region\(D\) is the disk \({x^2} + {y^2} \le 1\) in the first quadrant.
The density function is proportional to the square of its distance from the origin, that is \(\rho (x,y) = k\left( {{x^2} + {y^2}} \right)\)
Convert into polar coordinates to make the problem easier. So, from the given conditions it is observed that \(x\) varies from \(0\)to \(1\) and \(\theta \) varies from\(0\)to\(\frac{\pi }{2}\). Then, by (1) the total mass of the lamina is,
Integrate with respect to \(r\) and \(\theta \)by using the property (2),
\(\begin{aligned}{c}m = k\int_0^{\frac{\pi }{2}} d \theta \int_0^1 {{r^3}} dr\\ = k(\theta )_0^{\frac{\pi }{2}}\left( {\frac{{{\mu ^4}}}{4}} \right)_0^1\\ = k\left( {\frac{\pi }{2} - 0} \right)\left( {\frac{{{1^4}}}{4} - \frac{{{0^4}}}{4}} \right)\\ = k\left( {\frac{\pi }{2}} \right)\left( {\frac{1}{4} - 0} \right)\\ = \frac{{k\pi }}{8}\end{aligned}\)
In order to get the coordinates of the center of the mass, find\(\bar x{\rm{ and }}\bar y{\rm{. }}\)Therefore, by equation (1).
Integrate with respect to \(r\) and \(\theta \)by using the property (2),
\(\begin{aligned}{c}\bar x = \frac{8}{\pi }\int_0^{\frac{\pi }{2}} {\cos } \theta d\theta \int_0^1 {{r^4}} dr\\ = \frac{8}{\pi }(\sin \theta )_0^{\frac{\pi }{2}}\left( {\frac{{{r^5}}}{5}} \right)_0^1\\ = \frac{8}{\pi }\left( {\sin \left( {\frac{\pi }{2}} \right) - \sin (0)} \right)_0^{\frac{\pi }{2}}\left( {\frac{{{1^5}}}{5} - \frac{{{0^5}}}{5}} \right)\\ = \frac{8}{\pi }(1 - 0)\left( {\frac{1}{5} - \frac{0}{5}} \right)\end{aligned}\)
Further simplify the terms as shown below,
\(\begin{aligned}{c}\bar x = \frac{8}{\pi }(1)\left( {\frac{1}{5}} \right)\\ = \frac{8}{{5\pi }}\end{aligned}\)
Compute the value of \(\bar y{\rm{. }}\)
Integrate with respect to \(r\) and \(\theta \)by using the property (2),
\(\begin{aligned}{c}\bar y = \frac{8}{\pi }\int_0^{\frac{\pi }{2}} {\sin } \theta d\theta \int_0^1 {{r^4}} dr\\ = \frac{8}{\pi }( - \cos \theta )_0^{\frac{\pi }{2}}\left( {\frac{{{r^5}}}{5}} \right)_0^1\\ = \frac{8}{\pi }\left( { - \cos \left( {\frac{\pi }{2}} \right) + \cos (0)} \right)_0^{\frac{\pi }{2}}\left( {\frac{{{1^5}}}{5} - \frac{{{0^5}}}{5}} \right)\\ = \frac{8}{\pi }( - 0 + 1)\left( {\frac{1}{5} - \frac{0}{5}} \right)\end{aligned}\)
Further, simplify the terms as shown below,
\(\begin{aligned}{c}\bar y = \frac{8}{\pi }(1)\left( {\frac{1}{5}} \right)\\ = \frac{8}{{5\pi }}\end{aligned}\)
The center of mass of lamina is \((\bar x,\bar y) = \left( {\frac{8}{{5\pi }},\frac{8}{{5\pi }}} \right).\)
Thus, the center of mass of lamina is \(\left( {\frac{8}{{5\pi }},\frac{8}{{5\pi }}} \right)\)