Chapter 12: Q12E (page 707)
D is enclosed by curves \(y = {x^2}\& y = 3x\)
Short Answer
Hence, answer is \(\frac{{243}}{8}\)
Chapter 12: Q12E (page 707)
D is enclosed by curves \(y = {x^2}\& y = 3x\)
Hence, answer is \(\frac{{243}}{8}\)
All the tools & learning materials you need for study success - in one app.
Get started for freePlot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
a.\(\left( {{\rm{4,\pi /3, - 2}}} \right)\)
b.\(\left( {{\rm{2, - \pi /2,1}}} \right)\)
Find the volume of the solid that lies within both the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 1}}\) and sphere \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{\rm{2}}}{\rm{ = 4}}\).
Evaluate the double integral \(\iint\limits_D {\left( {x{y^2}} \right)dA}\)D is enclosed by\(x = 0, x = \sqrt {1 - {y^2}} \)
Identify the surface whose equation is given.
\({\rm{2}}{{\rm{r}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^2}{\rm{ = 1}}\)
Write the equations in cylindrical coordinates.
a. \({\rm{3x + 2y + z = 6}}\)
b. \({\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{ - }}{{\rm{y}}^{\rm{2}}}{\rm{ + }}{{\rm{z}}^{^{\rm{2}}}}{\rm{ = 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.