Chapter 12: Q11E (page 734)
Question:
Short Answer
Use the Geogebra or the same graphic tool to plot the surface.
Chapter 12: Q11E (page 734)
Question:
Use the Geogebra or the same graphic tool to plot the surface.
All the tools & learning materials you need for study success - in one app.
Get started for freePlot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point.
a.\(\left( {{\rm{4,\pi /3, - 2}}} \right)\)
b.\(\left( {{\rm{2, - \pi /2,1}}} \right)\)
Under the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{ }}\)and above the disk\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ }} \le {\rm{ 4}}\)
Use cylindrical coordinates Evaluate\(\iiint_{\text{E}}{\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}}}\text{dV}\), where \({\rm{E}}\) is the region that lies inside the cylinder \({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ = 16}}\) and between the planes \({\rm{z = - 5}}\) ,\({\rm{z = 4}}\).
Calculate the integrated integral \(\int\limits_{ - 3}^3 {\int\limits_0^{\pi /2} {(y + {y^2}\cos x)dxdy} } \)
a) In what way Fubini and Clairaultโs theorem are similar?
b) If \(f(x,y)\) is continuous on \(R = (a,b) \times (c,d)\) and \(g(x,y) = \int\limits_0^1 {\int\limits_0^1 {f(s,t)dtds} } \) for \(a < x < b\), \(c < y < d\), Show that \({g_{xy}} = {g_{yx}} = f(x,y)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.