Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) To determine the numerical value of given expression.

(b) To determine the numerical value of given expression.

Short Answer

Expert verified

(a) The value of \({\mathop{\rm sech}\nolimits} 0 = 1\).

(b) The value of \({\cosh ^{ - 1}}1 = 0\).

Step by step solution

01

Given expressions

(a) The expression is \(\sec h0\).

(b) The expression is \(\cos {h^{ - 1}}1\).

02

Definition of hyperbolic function

The Definition of hyperbolic function:

\(\begin{array}{c}coshx = \frac{{{e^x} + {e^{ - x}}}}{2}\\sechx = \frac{1}{{coshx}}\end{array}\)

03

Use the formula and substitute the values

(a)

Obtain the value of the expression \(\sec h0\).

\(\begin{array}{c}{\mathop{\rm sech}\nolimits} x = \frac{1}{{\cosh x}}\\ = \frac{1}{{\frac{{{c^x} + {e^{ - x}}}}{2}}}\\ = \frac{2}{{{e^x} + {e^{ - x}}}}\end{array}\)

Substitute 0 for\(x\):

\(\begin{array}{c}{\mathop{\rm sech}\nolimits} 0 = \frac{2}{{{e^0} + {e^0}}}\\ = \frac{2}{{1 + 1}}\\ = \frac{2}{2}\\ = 1\end{array}\)

Thus, the value of \({\mathop{\rm sech}\nolimits} 0 = 1\).

04

Use the formula and substitute the values

Obtain the value of the expression, \(\cos {h^{ - 1}}1\).

Use the definition of the inverse hyperbolic function, \({\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\).

Where, \(x \ge 1\).

Substitute 1 for\(x\):

\(\begin{array}{c}{\cosh ^{ - 1}}1 = \ln \left( {1 + \sqrt {{1^2} - 1} } \right)\\ = \ln (1)\\ = 0\end{array}\)

Thus, the value of \({\cosh ^{ - 1}}1 = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free