Chapter 3: Q54E (page 162)
To determine
(a) The value of \({\log _{12}}10\).
(b) The value of \({\log _2}8.4\).
Short Answer
(a) The value of \({\log _{12}}10 \approx 0.926628\).
(b) The value of \({\log _2}8.4 \approx 3.070390\).
Chapter 3: Q54E (page 162)
To determine
(a) The value of \({\log _{12}}10\).
(b) The value of \({\log _2}8.4\).
(a) The value of \({\log _{12}}10 \approx 0.926628\).
(b) The value of \({\log _2}8.4 \approx 3.070390\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo determine the value of \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \left( {{e^{\tan x}}} \right).\)
1โ38 โ Find the limit. Use lโHospitalโs Rule where appropriate. If there is a more elementary method, consider using it. If lโHospitalโs Rule doesnโt apply, explain why.
8.\(\mathop {lim}\limits_{\theta \to \frac{\pi }{2}} \frac{{1 - sin\theta }}{{csc\theta }}\).
Determine the given function \(f\)to be an odd function.
Sketch the graph of the function \(y = 1 - \frac{1}{2}{e^{ - x}}\) by using transformations if needed.
Determine whether the function\(g(x) = \frac{1}{x}\)is one-to-one.
What do you think about this solution?
We value your feedback to improve our textbook solutions.