Chapter 3: Q52E (page 190)
To determine if \(x = \ln (\sec \theta + \tan \theta )\), then \(\sec \theta = \cosh x\).
Short Answer
If\(x = \ln (\sec \theta + \tan \theta )\), then \(\sec \theta = \cosh x\).
Chapter 3: Q52E (page 190)
To determine if \(x = \ln (\sec \theta + \tan \theta )\), then \(\sec \theta = \cosh x\).
If\(x = \ln (\sec \theta + \tan \theta )\), then \(\sec \theta = \cosh x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(5)\).
Prove the identity \(coshx - sinhx = {e^{ - x}}\).
Sketch the graph of the function \(y = 2\left( {1 - {e^x}} \right)\) by using transformations if needed.
(a) The function\(f(x) = 9 - {x^2},0 \le x \le 3\)is one-to-one.
(b) The value of\({\left( {{f^{ - 1}}} \right)^\prime }(8)\), where\(f(x) = 9 - {x^2}\).
(c) The inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(d) Whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(8)\)is\(\frac{{ - 1}}{2}\)using the inverse function.
(e) Sketch the graph of\(f(x) = 9 - {x^2}\)and\({f^{ - 1}}(x) = {x^2} + 2{\rm{ }}\)in the same coordinate.
Determine a formula and domain for inverse function and interpret the meaning of inverse function.
What do you think about this solution?
We value your feedback to improve our textbook solutions.