Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To expand the quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) using logarithmic properties.

Short Answer

Expert verified

The quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) can be expressed as \(4\ln (s) + \frac{1}{2}\ln (t) + \frac{1}{4}\ln (u)\).

Step by step solution

01

Given data

The given logarithm function is \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\).

02

Concept of Law of logarithm

Laws of logarithm:

Quotient law:\({\log _a}\left( {\frac{x}{y}} \right) = {\log _a}x - {\log _a}y\)

Product law:\({\log _a}(xy) = {\log _a}x + {\log _a}y\)

Power law:\({\log _a}\left( {{x^r}} \right) = r{\log _a}x\), where\(r\)is any real number.

03

Calculation of the value of \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\)

Simplify the given quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) as shown below.

\(\begin{array}{c}\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{{(t\sqrt u )}^{\frac{1}{2}}}} \right)\\\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{{\left( {t{{(u)}^{\frac{1}{2}}}} \right)}^{\frac{1}{2}}}} \right)\\\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right)\end{array}\)

Use the law of logarithm and expand \(\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right)\) as follows:

\(\begin{array}{c}\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right) = \ln \left( {{s^4}} \right) + \ln \left( {{t^{\frac{1}{2}}}} \right) + \ln \left( {{u^{\frac{1}{4}}}} \right)\\\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right) = 4\ln (s) + \frac{1}{2}\ln (t) + \frac{1}{4}\ln (u)\end{array}\)

Thus, the quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) can be expressed as \(4\ln (s) + \frac{1}{2}\ln (t) + \frac{1}{4}\ln (u)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free