Simplify the given quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) as shown below.
\(\begin{array}{c}\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{{(t\sqrt u )}^{\frac{1}{2}}}} \right)\\\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{{\left( {t{{(u)}^{\frac{1}{2}}}} \right)}^{\frac{1}{2}}}} \right)\\\ln \left( {{s^4}\sqrt {t\sqrt u } } \right) = \ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right)\end{array}\)
Use the law of logarithm and expand \(\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right)\) as follows:
\(\begin{array}{c}\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right) = \ln \left( {{s^4}} \right) + \ln \left( {{t^{\frac{1}{2}}}} \right) + \ln \left( {{u^{\frac{1}{4}}}} \right)\\\ln \left( {{s^4}{t^{\frac{1}{2}}}{{(u)}^{\frac{1}{4}}}} \right) = 4\ln (s) + \frac{1}{2}\ln (t) + \frac{1}{4}\ln (u)\end{array}\)
Thus, the quantity \(\ln \left( {{s^4}\sqrt {t\sqrt u } } \right)\) can be expressed as \(4\ln (s) + \frac{1}{2}\ln (t) + \frac{1}{4}\ln (u)\).