Chapter 3: Q50E (page 190)
Evaluate\(\mathop {lim}\limits_{x \to = } \frac{{sinhx}}{{{e^x}}}\).
Short Answer
The value of \(\mathop {\lim }\limits_{x \to = } \frac{{\sinh x}}{{{e^x}}}\) is \(\frac{1}{2}\).
Chapter 3: Q50E (page 190)
Evaluate\(\mathop {lim}\limits_{x \to = } \frac{{sinhx}}{{{e^x}}}\).
The value of \(\mathop {\lim }\limits_{x \to = } \frac{{\sinh x}}{{{e^x}}}\) is \(\frac{1}{2}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the function \(y = {e^{|x|}}\) by using transformations if needed.
To determine the point of the curve\(y = coshx\)when the curve has slope \(1\).
Determine the value of \({f^{ - 1}}(3)\) and\(f\left( {{f^{ - 1}}(2)} \right)\) if \(f(x) = {x^5} + {x^3} + x\).
Sketch the graphs of the function \(y = {3^x},\;y = {10^x},\;y = {\left( {\frac{1}{3}} \right)^x}\)and \(y = {\left( {\frac{1}{{10}}} \right)^x}\) on the same axes and interpret how these graphs are related.
(a) To determine the numerical value of given expression.
(b) To determine the numerical value of given expression.
What do you think about this solution?
We value your feedback to improve our textbook solutions.