Chapter 3: Q40E (page 190)
To find the derivative of the function.
Short Answer
The derivative of the function \(y = {\mathop{\rm sech}\nolimits} \left( {{e^{ - x}}} \right)\) is, \(\frac{{dy}}{{dx}} = \frac{1}{{\sqrt {1 - {e^{ - 2x}}} }}\).
Chapter 3: Q40E (page 190)
To find the derivative of the function.
The derivative of the function \(y = {\mathop{\rm sech}\nolimits} \left( {{e^{ - x}}} \right)\) is, \(\frac{{dy}}{{dx}} = \frac{1}{{\sqrt {1 - {e^{ - 2x}}} }}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(3)\), where\(f(x) = 3 + {x^2} + \tan \left( {\frac{{\pi x}}{2}} \right),\; - 1 < x < 1\).
(a) To determine the numerical value of given expression.
(b) To determine the numerical value of given expression.
Sketch the graphs of the function \(y = {e^x},y = {e^{ - x}},y = {8^x}\)and \(y = {8^{ - x}}\) on the same axes and interpret how these graphs are related.
(a) Write an equation of the exponential function with base \(a > 0\).
(b) Find the domain of the exponential function obtained in part (a).
(c) Find the range of the function \(y = {a^x}\)if \(a \ne 1\).
(d)
(i) Sketch the graph of the exponential function \(y = {a^x}\) if \(a > 1\).
(ii) Sketch the graph of the exponential function \(y = {a^x}\)if \(a = 1\).
(iii) Sketch the graph of the exponential function \(y = {a^x}\)if \(0 < a < 1\).
Sketch the graph of the function \(y = 2\left( {1 - {e^x}} \right)\) by using transformations if needed.
What do you think about this solution?
We value your feedback to improve our textbook solutions.