Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(5)\).

Short Answer

Expert verified

The value of \({\left( {{f^{ - 1}}} \right)^\prime }(5)\) is \(\frac{3}{2}\).

Step by step solution

01

Given function

The given function is, \(f(4) = 5\).

02

Concept of inverse function

If\(f\)is a one-to-one differentiable function with inverse function\({f^{ - 1}}\)and\({f^\prime }\left( {{f^{ - 1}}(a)} \right) \ne 0\), then the inverse function is differentiable at\(a\)and\({\left( {{f^{ - 1}}} \right)^\prime }(a) = \frac{1}{{{f^\prime }\left( {{f^{ - 1}}(a)} \right)}}\).

03

Use the theorem to find the value of \({\left( {{f^{ - 1}}} \right)^\prime }(5)\)

From the given information,\(f(4) = 5\).

Thus,\({f^{ - 1}}(5) = 4\).

With the help of the theorem If\(f\)is a one-to-one differentiable function with inverse function\({f^{ - 1}}\)and\({f^\prime }\left( {{f^{ - 1}}(a)} \right) \ne 0\), then the inverse function is differentiable at\(a\)and\({\left( {{f^{ - 1}}} \right)^\prime }(a) = \frac{1}{{{f^\prime }\left( {{f^{ - 1}}(a)} \right)}}\)obtain the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)as follows:

\(\begin{array}{c}{\left( {{f^{ - 1}}} \right)^\prime }(5) = \frac{1}{{{f^\prime }\left( {{f^{ - 1}}(5)} \right)}}\\ = \frac{1}{{{f^\prime }(4)}}\\ = \frac{1}{{\left( {\frac{2}{3}} \right)}}\\ = \frac{3}{2}\end{array}\)

Thus, the value of \({\left( {{f^{ - 1}}} \right)^\prime }(5)\) is \(\frac{3}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free