Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.

38. \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^x} + x} \right)^{1/x}}\)

Short Answer

Expert verified

The limit \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^x} + x} \right)^{1/x}}\) is \(e\).

Step by step solution

01

Given information

The function is \(\mathop {\lim }\limits_{x \to \infty } {\left( {{e^x} + x} \right)^{1/x}}\).

02

Concept of L Hospital’s Rule

If two functions in the neighborhood of a given point have an infinite limit or zero as a limit and are both differentiable.

If this limit exists, the limit of the quotient of the functions is equal to the limit of the quotient of their derivatives.

03

Find the limit

Consider, \(y = \mathop {\lim }\limits_{x \to \infty } {\left( {{e^x} + x} \right)^{1/x}}\).

Take natural log of both sides as, \(\ln y = \ln \left( {\mathop {\lim }\limits_{x \to \infty } {{\left( {{e^x} + x} \right)}^{1/x}}} \right)\).

Remember that: \(\mathop {\lim }\limits_{x \to a} f(g(x)) = f\left( {\mathop {\lim }\limits_{x \to a} g(x)} \right)\)

\(\ln y = \mathop {\lim }\limits_{x \to \infty } \ln {\left( {{e^x} + x} \right)^{1/x}}\)

Recall that: \(\ln {x^a} = a\ln x\)

\(\begin{array}{c}\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\ln \left( {{e^x} + x} \right)\\\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{{\ln \left( {{e^x} + x} \right)}}{x}\end{array}\)

04

Apply L Hopital’s rule

Since the Limit is of the form \(\frac{\infty }{\infty }\), apply L Hospital's Rule.

\(\begin{array}{l}\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{{{e^x} + 1}}{{{e^x} + x}}}}{1}\\\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{{{e^x} + 1}}{{{e^x} + x}}\end{array}\)

Again, apply L Hospital's Rule as shown below.

\(\begin{array}{c}\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{{{e^x}}}{{{e^x} + 1}}\\Again,{\rm{ }}apply{\rm{ }}L{\rm{ }}Hospital's{\rm{ }}Rule{\rm{ }}as{\rm{ }}shown{\rm{ }}below.\\\ln y = \mathop {\lim }\limits_{x \to \infty } \frac{{{e^x}}}{{{e^x}}}\\ = 1\\{e^{\ln y}} = {e^1}\end{array}\)

Therefore, \(y = e\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free