Chapter 3: Q38E (page 162)
Determine the value of \({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \sqrt {{x^3} + {x^2} + x + 1} \).
Short Answer
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(2)\) is \(0.329\).
Chapter 3: Q38E (page 162)
Determine the value of \({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \sqrt {{x^3} + {x^2} + x + 1} \).
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(2)\) is \(0.329\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = {x^3} + 3\sin x + 2\cos x\).
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\)
(a) Explain how the number \(e\) is defined.
(b) Find an approximate value of \(e\).
(c) Explain what is the natural exponential function?
Determine a formula and domain for inverse function and interpret the meaning of inverse function.
1โ38 โ Find the limit. Use lโHospitalโs Rule where appropriate. If there is a more elementary method, consider using it. If lโHospitalโs Rule doesnโt apply, explain why.
15.\(\mathop {\lim }\limits_{x \to 0} \frac{{x{3^x}}}{{{3^x} - 1}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.