Chapter 3: Q36E (page 190)
To find the derivative of the function.
Short Answer
The derivative of the function \(y = {\sinh ^{ - 1}}(\tan x)\) is, \(\frac{{dy}}{{dx}} = |\sec x|\).
Chapter 3: Q36E (page 190)
To find the derivative of the function.
The derivative of the function \(y = {\sinh ^{ - 1}}(\tan x)\) is, \(\frac{{dy}}{{dx}} = |\sec x|\).
All the tools & learning materials you need for study success - in one app.
Get started for free1โ38 โ Find the limit. Use lโHospitalโs Rule where appropriate. If there is a more elementary method, consider using it. If lโHospitalโs Rule doesnโt apply, explain why.
9.\(\mathop {lim}\limits_{x \to {0^ + }} \frac{{lnx}}{x}\).
To prove the identity \(cosh( - x) = coshx\).
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\)
Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = {x^3} + 3\sin x + 2\cos x\).
To determine the value of \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {{e^{\frac{3}{{2 - x}}}}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.