Chapter 3: Q36E (page 162)
Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = {x^3} + 3\sin x + 2\cos x\).
Short Answer
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(4) = \frac{1}{3}\).
Chapter 3: Q36E (page 162)
Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = {x^3} + 3\sin x + 2\cos x\).
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(4) = \frac{1}{3}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeTo determine \({\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\) where \(x \ge 1\).
Sketch the graphs of the function \(y = {e^x},y = {e^{ - x}},y = {8^x}\)and \(y = {8^{ - x}}\) on the same axes and interpret how these graphs are related.
Find a formula for the inverse of the function \(f(x) = 1 + \sqrt {2 + 3x} \).
Determine the formula for the inverse of the function\(f(x) = {x^4} + 1,x \ge 0\). Sketch the graph of \(f,{f^{ - 1}}\) and \(y = x\), check whether graphs \(f\) and \({f^{ - 1}}\) reflects about the line \(y = x\).
Prove the identity \(coshx - sinhx = {e^{ - x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.