Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find the derivative of the function \(G(x) = \frac{{1 - coshx}}{{1 + coshx}}\).

Short Answer

Expert verified

The derivative of the function \(G(x) = \frac{{1 - \cosh x}}{{1 + \cosh x}}\) is \(\frac{{ - 2\sinh x}}{{{{(1 + \cosh x)}^2}}}\).

Step by step solution

01

Given function

The function is, \(G(x) = \frac{{1 - \cosh x}}{{1 + \cosh x}}\).

02

The Concept of derivative

The derivative of\(coshx\)is\(\frac{d}{{dx}}(coshx) = sinhx\).

03

Evaluate the derivative of given function

Evaluate the derivative of \(G(x) = \frac{{1 - \cosh x}}{{1 + \cosh x}}\).

\(\begin{aligned}{c}{G^\prime }(x) &= {\left( {\frac{{1 - \cosh x}}{{1 + \cosh x}}} \right)^\prime }\\ &= \frac{{(1 + \cosh x){{(1 - \cosh x)}^\prime } - (1 - \cosh x){{(1 + \cosh x)}^\prime }}}{{{{(1 + \cosh x)}^2}}}\\ &= \frac{{(1 + \cosh x)( - \sinh x) - (1 - \cosh x)(\sinh x)}}{{{{(1 + \cosh x)}^2}}}\\ &= \frac{{ - \sinh x - \sinh x\cosh x - \sinh x + \sinh x\cosh x}}{{{{(1 + \cosh x)}^2}}}\end{aligned}\)

So, \( = \frac{{ - 2\sinh x}}{{{{(1 + \cosh x)}^2}}}\).

Therefore, the derivative of the function \(G(x) = \frac{{1 - \cosh x}}{{1 + \cosh x}}\) is \(\frac{{ - 2\sinh x}}{{{{(1 + \cosh x)}^2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free