Chapter 3: Q35E (page 162)
Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(4)\), where\(f(x) = 2{x^3} + 3{x^2} + 7x + 4\).
Short Answer
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(4) = \frac{1}{7}\).
Chapter 3: Q35E (page 162)
Determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(4)\), where\(f(x) = 2{x^3} + 3{x^2} + 7x + 4\).
The value of \({\left( {{f^{ - 1}}} \right)^\prime }(4) = \frac{1}{7}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the function \(f(x) = \frac{1}{{1 + a{e^{bx}}}},a > 0\) for various \(a\) and \(b\) values; explain how the graph change when the values of \(a\) and \(b\) are changed.
Prove the identity \(coshx - sinhx = {e^{ - x}}\).
Determine the formula for the inverse of the function\(f(x) = {x^4} + 1,x \ge 0\). Sketch the graph of \(f,{f^{ - 1}}\) and \(y = x\), check whether graphs \(f\) and \({f^{ - 1}}\) reflects about the line \(y = x\).
Find a formula for the inverse of the function \(f(x) = 1 + \sqrt {2 + 3x} \).
Sketch the graph of the function \(y = {(0.5)^x}\) by using transformations if needed.
What do you think about this solution?
We value your feedback to improve our textbook solutions.