Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find the derivative of the function\(f(t) = cscht(1 - lncscht)\).

Short Answer

Expert verified

The derivative of the function \(f(t) = {\mathop{\rm csch}\nolimits} t(1 - \ln {\mathop{\rm csch}\nolimits} t)\)is\((\ln {\mathop{\rm csch}\nolimits} t)({\mathop{\rm csch}\nolimits} t\coth t)\).

Step by step solution

01

Given function

The function \(f(t) = {\mathop{\rm csch}\nolimits} t(1 - \ln {\mathop{\rm csch}\nolimits} t)\)

02

Concept of the Derivative rules

The Derivative rules used:

(1) The chain rule:\(\frac{{dy}}{{dx}} = \frac{{dy}}{{du}}\frac{{du}}{{dx}}\)

(2) The derivative of the hyperbolic cosine function is,\(\frac{d}{{dx}}(coshx) = sinhx\).

03

Solve the given expression to general complex number

The derivative of the function \(y = {e^{\cosh 3x}}\) is computed as shown below.

\(\frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {{e^{\cosh 3x}}} \right)\)

Let \(u = \cosh 3x\).

\(\frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {{e^\mu }} \right)\)

Apply the chain rule and simplify the terms.

\(\begin{array}{c}\frac{{dy}}{{dx}} = \frac{d}{{du}}\left( {{e^u}} \right)\frac{{du}}{{dx}}\\ = {e^u}\frac{{du}}{{dx}}\end{array}\)

Substitute, \(u = \cosh 3x\).

\(\begin{array}{c}\frac{{dy}}{{dx}} = {e^{\cosh 3x}}\frac{d}{{dx}}(\cosh 3x)\\ = {e^{\cosh 3x}}\frac{d}{{d(3x)}}(\cosh 3x) \cdot \frac{d}{{dx}}(3x)\\ = {e^{\cosh 3x}}\sinh 3x(3)\\ = 3{e^{\cosh 3x}}\sinh 3x\end{array}\)

Therefore, the derivative of the function \(y = {e^{\cosh 3x}}\) is, \(\frac{{dy}}{{dx}} = 3{e^{\cosh 3x}}\sinh 3x\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free