The derivative of the function \(y = {e^{\cosh 3x}}\) is computed as shown below.
\(\frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {{e^{\cosh 3x}}} \right)\)
Let \(u = \cosh 3x\).
\(\frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {{e^\mu }} \right)\)
Apply the chain rule and simplify the terms.
\(\begin{array}{c}\frac{{dy}}{{dx}} = \frac{d}{{du}}\left( {{e^u}} \right)\frac{{du}}{{dx}}\\ = {e^u}\frac{{du}}{{dx}}\end{array}\)
Substitute, \(u = \cosh 3x\).
\(\begin{array}{c}\frac{{dy}}{{dx}} = {e^{\cosh 3x}}\frac{d}{{dx}}(\cosh 3x)\\ = {e^{\cosh 3x}}\frac{d}{{d(3x)}}(\cosh 3x) \cdot \frac{d}{{dx}}(3x)\\ = {e^{\cosh 3x}}\sinh 3x(3)\\ = 3{e^{\cosh 3x}}\sinh 3x\end{array}\)
Therefore, the derivative of the function \(y = {e^{\cosh 3x}}\) is, \(\frac{{dy}}{{dx}} = 3{e^{\cosh 3x}}\sinh 3x\).