Express given function as shown below.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to - \infty } (x - \ln x) = \mathop {\lim }\limits_{x \to - \infty } x\left( {1 - \frac{{\ln x}}{x}} \right)\\ = \mathop {\lim }\limits_{x \to \infty } x \cdot \mathop {\lim }\limits_{x \to \infty } \left( {1 - \frac{{\ln x}}{x}} \right)\end{array}\)
Therefore, \(\mathop {\lim }\limits_{x \to - \infty } (x - \ln x) = \mathop {\lim }\limits_{x \to \infty } x \cdot \mathop {\lim }\limits_{x \to \infty } \left( {1 - \frac{{\ln x}}{x}} \right)\). …… (1)
Consider, \(\mathop {\lim }\limits_{x \to \infty } \left( {1 - \frac{{\ln x}}{x}} \right) = \mathop {\lim }\limits_{x \to \infty } 1 - \mathop {\lim }\limits_{x \to \infty } \frac{{\ln x}}{x}\).
Obtain the value of the function as \(x\) approaches \(\infty \).
The limit of the first term is, \(\mathop {\lim }\limits_{x \to \infty } 1 = 1\).
As \(x\) approaches \(\infty \), the numerator of the second term \(\ln x\) approaches to \(\infty \) and denominator of the second term \(x\) also approaches to \(\infty \).
Thus, \(\mathop {\lim }\limits_{x \to \infty } \left( {1 - \frac{{\ln x}}{x}} \right) = \frac{\infty }{\infty }\) is in an indeterminate form.