Chapter 3: Q29E (page 150)
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\)
Short Answer
The value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\) is .
Chapter 3: Q29E (page 150)
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\)
The value of \(\mathop {\lim }\limits_{x \to \infty } \left( {{e^{ - 2x}}\cos x} \right)\) is .
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the function given by a graph is one-to-one.
Sketch the graphs of the function \(y = {0.9^x},\;y = {0.6^x},\;y = {0.3^x}\)and \(y = {0.1^x}\) on the same axes and interpret how these graphs are related.
Determine whether the function\(g(x) = \frac{1}{x}\)is one-to-one.
Determine the given function \(f\)to be an odd function.
Determine the value of \({g^{ - 1}}(4)\) if \(g(x) = 3 + x + {e^x}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.