Therefore, apply L’ Hospital’s Rule and obtain the limit.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to {1^ + }} \ln x\tan \left( {\frac{{\pi x}}{2}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\ln x \cdot \sin \left( {\frac{{\pi x}}{2}} \right)}}{{\cos \left( {\frac{{\pi x}}{2}} \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{\pi }{2} \cdot \cos \left( {\frac{{\pi x}}{2}} \right) \cdot \ln x + \sin \left( {\frac{{\pi x}}{2}} \right) \cdot \frac{1}{x}}}{{ - \frac{\pi }{2} \cdot \sin \left( {\frac{{\pi x}}{2}} \right)}}\\ = - \frac{{\frac{\pi }{2} \cdot \cos \left( {\frac{\pi }{2}} \right) + \sin \left( {\frac{\pi }{2}} \right) \cdot \frac{1}{1}}}{{\frac{\pi }{2} \cdot \sin \left( {\frac{\pi }{2}} \right)}}\end{array}\)
Simplify the terms further.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to {1^ + }} \ln x\tan \left( {\frac{{\pi x}}{2}} \right) = - \frac{{\frac{\pi }{2} \cdot \cos \left( {\frac{\pi }{2}} \right) + \sin \left( {\frac{\pi }{2}} \right) \cdot \frac{1}{1}}}{{\frac{\pi }{2} \cdot \sin \left( {\frac{\pi }{2}} \right)}}\\ = - \frac{{\frac{\pi }{2} \cdot 0 + 1}}{{\frac{\pi }{2} \cdot 1}}\\ = - \frac{1}{{\frac{\pi }{2}}}\\ = - \frac{2}{\pi }\end{array}\)
Thus, the limit of the function is \( - \frac{2}{\pi }\).