(A) to determine the function\(f(x) = \frac{1}{{x - 1}},\;x > 1\)is one-to-one.\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in
(B) To determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \frac{1}{{x - 1}}\).
(C) To determine the inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(D) To determine whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)is\(\frac{1}{4}\)using the inverse function.
(E) To sketch: The graph of\(f(x) = \frac{1}{{x - 1}}\)and\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in the same coordinate.