Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To determine the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\).

Short Answer

Expert verified

The value of \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\) is 1.

Step by step solution

01

Given information

The expression is \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\).

02

Concept of limits

Limit, mathematical concept based on the idea of closeness, used primarily to assign values to certain functions at points where no values are defined, in such a way as to be consistent with nearby values.

03

Obtain the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\)

The value of\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\)is shown below.

\(\begin{array}{c}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\left( {\frac{{{e^{3x}}}}{{{e^{3x}}}} - \frac{{{e^{ - 3x}}}}{{{e^{33}}}}} \right)}}{{\left( {\frac{{{e^{3x}}}}{{{e^{3x}}}} + \frac{{{e^{ - 3x}}}}{{{e^{3x}}}}} \right)}}} \right)\\ = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{1 - {e^{ - 6x}}}}{{\left( {1 + {e^{ - 4x}}} \right)}}} \right)\\ = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{1 - {e^{ - 6x}}}}{{1 + {e^{ - 4x}}}}} \right)\end{array}\)

On further simplification:

\[\begin{array}{c}\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right) = \frac{{1 - {e^{ - \infty }}}}{{1 + {e^{ - \infty }}}}\\ = \frac{{1 - 0}}{{1 + 0}}\quad \\ = 1\end{array}\]

Therefore, the value of \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{e^{3x}} - {e^{ - 3x}}}}{{{e^{3x}} + {e^{ - 3x}}}}} \right)\) is 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free