Chapter 3: Q23E (page 150)
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } {(1.001)^x}\).
Short Answer
The value of \(\mathop {\lim }\limits_{x \to \infty } {(1.001)^x}\) is \(\infty \).
Chapter 3: Q23E (page 150)
To determine the value of \(\mathop {\lim }\limits_{x \to \infty } {(1.001)^x}\).
The value of \(\mathop {\lim }\limits_{x \to \infty } {(1.001)^x}\) is \(\infty \).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Determine why the given graph \(f\) is one-to-one.
(b) Determine the domain and range of \({f^{ - 1}}\).
(c) Determine the value of \({f^{ - 1}}(2)\).
(d) Determine the value of \({f^{ - 1}}(0)\).
Determine a formula and domain for inverse function and interpret the meaning of inverse function.
To determine the value of \(\mathop {\lim }\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \left( {{e^{\tan x}}} \right).\)
To prove the identity \(cosh( - x) = coshx\).
Sketch the graph of the function \(y = 1 - \frac{1}{2}{e^{ - x}}\) by using transformations if needed.
What do you think about this solution?
We value your feedback to improve our textbook solutions.