Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) To prove the formula\({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\)using the method of Example 3.

(b) To prove the formula\({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\)by replacing\(x\)by\(y\)in Exercise 14.

Short Answer

Expert verified
  1. The proof is given below.
  2. The proof is given below.

Step by step solution

01

Given data

The equation to be proved is \({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\).

02

Formula of hyperbolic function

The identity is\(\frac{{1 + \tanh y}}{{1 - \tanh y}} = {e^{2y}}\).

03

Prove of the equation \({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\)by the example 3 method

(a)

To prove the given equation in example 3 method let\(y = {\tanh ^{ - 1}}x\).

Then,\(x = \tanh y\).

Now, solve for\(y\).

\(\begin{array}{l}x = \tanh y\\x = \frac{{\sinh y}}{{\cosh y}}\\x = \frac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}\\x\left( {{e^y} + {e^{ - y}}} \right) = {e^y} - {e^{ - y}}\end{array}\)

04

Simplification of equation\(x\left( {{e^y} + {e^{ - y}}} \right) = {e^y} - {e^{ - y}}\)

Simplify further as shown below.

\(\begin{array}{c} - {e^y} + x{e^y} - {e^{ - y}} - x{e^{ - y}}\\{e^y}( - 1 + x) = - {e^{ - y}}(1 + x)\\{e^y}{e^{ - y}}(x - 1) = - {e^{ - y}}{e^{ - y}}(1 + x)\\(x - 1) = - {e^{ - 2y}}(1 + x)\end{array}\)

(Multiply both side by \({e^{ - y}}\))

Solve for\(y\).

\(\begin{array}{c}\frac{1}{{{e^{ - 2y}}}} = - \frac{{(1 + x)}}{{(x - 1)}}\\{e^{2y}} = \frac{{(1 + x)}}{{(1 - x)}}\\2y = \ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\\y = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\end{array}\)

So,\({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\).

Therefore, the formula for \({\tanh ^{ - 1}}x\) is \({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right).\)

05

Prove of the equation \({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\) by exercise 14 method

(b)

To prove the given equation let\(y = {\tanh ^{ - 1}}x\).

Then,\(x = \tanh y\).

Substitute\(x = \tanh y\)in the identity\(\frac{{1 + \tanh y}}{{1 - \tanh y}} = {e^{2y}}\).

\(\begin{array}{c}\frac{{1 + \tanh y}}{{1 - \tanh y}} = {e^{2y}}\\\frac{{1 + x}}{{1 - x}} = {e^{2y}}\\\ln \left( {\frac{{1 + x}}{{1 - x}}} \right) = 2y\\y = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\end{array}\)

Therefore, the formula for \({\tanh ^{ - 1}}x\) is \({\tanh ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{1 + x}}{{1 - x}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free