Chapter 3: Q22E (page 189)
To determine \({\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\) where \(x \ge 1\).
Short Answer
The proof is below.
Chapter 3: Q22E (page 189)
To determine \({\cosh ^{ - 1}}x = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\) where \(x \ge 1\).
The proof is below.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the function\(f(x) = 10 - 3x\)is one-to-one.
(A) to determine the function\(f(x) = \frac{1}{{x - 1}},\;x > 1\)is one-to-one.\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in
(B) To determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \frac{1}{{x - 1}}\).
(C) To determine the inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(D) To determine whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)is\(\frac{1}{4}\)using the inverse function.
(E) To sketch: The graph of\(f(x) = \frac{1}{{x - 1}}\)and\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in the same coordinate.
Find a formula for the inverse of the function \(f(x) = 1 + \sqrt {2 + 3x} \).
Determine a formula and domain for inverse function and interpret the meaning of inverse function.
(a) Determine the value of \({f^{ - 1}}(17)\) if\(f\) is one-to-one and \(f(6) = 17\).
(b) Determine the value of \(f(2)\) if\(f\) is one-to-one and \({f^{ - 1}}(3) = 2\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.