Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.

22.\(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\cos x\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\)

Short Answer

Expert verified

The value of \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\cos x\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\) is \(\cos a\).

Step by step solution

01

Given information.

The given limit is \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\cos x\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\).

02

Concept of L'Hospital's Rule

Suppose\(f\)and\(g\)are differentiable and\({g^\prime }(x) \ne 0\)near\(a\)(except possibly at\(a\)).

Suppose that\(\mathop {\lim }\limits_{x \to a} f(x) = 0\)and\(\mathop {\lim }\limits_{x \to a} g(x) = 0\)or that\(\mathop {\lim }\limits_{x \to a} f(x) = \pm \infty \)and\(\mathop {\lim }\limits_{x \to a} g(x) = \pm \infty \)or in other words, we have an indeterminate form of type\(\frac{0}{0}\)or\(\frac{\infty }{\infty }\).

Then,\(\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \frac{{{f^\prime }(x)}}{{{g^\prime }(x)}}\)if the limit on the right side exists (or is\(\infty \)or\( - \infty \)).

03

Find the value of the limit

Consider given limit function as product of two functions. \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\cos x\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \mathop {\lim }\limits_{x \to {a^ + }} \cos x \cdot \mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\) ...... (1)

Consider the limit function, \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\).

Obtain the value of the function as \(x\) approaches \({a^ + }\).

As \(x\) approaches \({a^ + }\), the numerator is:

\(\begin{array}{c}\ln (x - a) = \ln (a - a)\\ = \ln (0)\\ = \infty \end{array}\)

And the value of denominator is:

\(\begin{array}{c}\ln \left( {{e^x} - {e^a}} \right) = \ln \left( {{e^a} - {e^a}} \right)\\ = \ln (0)\\ = \infty \end{array}\)

Thus, \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \frac{\infty }{\infty }\) is in an indeterminate form.

Therefore, apply L'Hospital's Rule and obtain the limit.

\(\begin{array}{c}\mathop {\lim }\limits_{x \to 1} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \mathop {\lim }\limits_{x \to {a^ + }} \frac{{\frac{1}{{x - a}}}}{{\frac{{{e^x}}}{{{e^{x - {e^a}}}}}}}\\ = \mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}}\frac{{{e^x} - {e^a}}}{{{e^x}}}\\ = \mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{{e^x}}}\frac{{{e^x} - {e^a}}}{{x - a}}\\ = \mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{{e^x}}} \cdot \mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}}\end{array}\)

Therefore, \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \lim \frac{1}{{{e^x}}} \cdot \mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}}\). ...... (2)

Consider, \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}}\).

Obtain the value of the function as \(x\) approaches \({a^ + }\).

As \(x\) approaches \({a^ + }\), the numerator is:

\(\begin{array}{c}{e^x} - {e^a} = {e^a} - {e^a}\\ = 0\end{array}\)

And the value of denominator is:

\(\begin{array}{c}x - a = a - a\\ = 0\end{array}\)

Thus, \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}} = \frac{0}{0}\) is again in an indeterminate form.

04

Apply L'Hospital's Rule and obtain the limit

Therefore, apply L'Hospital's Rule and obtain the limit.

\(\begin{array}{c}\mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}} = \mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x}}}{1}\\ = \mathop {\lim }\limits_{x \to {a^ + }} {e^x}\\ = {e^a}\end{array}\)

Substitute \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}} = {e^a}\) in equation (2).

\(\begin{array}{c}\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{{e^x}}} \cdot \mathop {\lim }\limits_{x \to {a^ + }} \frac{{{e^x} - {e^a}}}{{x - a}}\\ = \mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{{e^x}}} \cdot {e^a}\\ = 1\end{array}\)

Substitute the respective value in the equation (1).

\(\begin{array}{c}\mathop {\lim }\limits_{x \to {a^ + }} \frac{{\cos x\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}} = \mathop {\lim }\limits_{x \to {a^ + }} \cos x \cdot \mathop {\lim }\limits_{x \to {a^ + }} \frac{{\ln (x - a)}}{{\ln \left( {{e^x} - {e^a}} \right)}}\\ = \mathop {\lim }\limits_{x \to {a^ + }} \cos x \cdot 1\\ = \mathop {\lim }\limits_{x \to {a^ + }} \cos x\\ = \cos a\end{array}\)

Thus, the limit of the function is \(\cos a\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free