Obtain the value of the function as\(x\)approaches\(0\).
As\(x\)approaches\(0\), the numerator becomes:
\(\begin{array}{c}{e^x} - {e^{ - x}} - 2x = {e^0} - {e^{ - 0}} - 2 \cdot (0)\\ = 1 - 1 - 0\\ = 0\end{array}\)
And the denominator becomes:
\(\begin{array}{c}x - \sin x = 0 - \sin 0\\ = 0 - 0\\ = 0\end{array}\)
Thus,\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - {e^{ - x}} - 2x}}{{x - \sin x}} = \frac{0}{0}\)is in an indeterminate form.
Therefore, apply L'Hospital's Rule and obtain the limit.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - {e^{ - x}} - 2x}}{{x - \sin x}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \left( { - {e^{ - x}}} \right) - 2}}{{1 - \cos x}}\\ = \frac{{{e^x} + {e^{ - x}} - 2}}{{1 - \cos x}}\end{array}\)
Again as\(x\)approaches\(0\), the numerator is:
\(\begin{array}{c}{e^x} + {e^{ - x}} - 2 = {e^0} + {e^{ - 0}} - 2\\ = 1 + 1 - 2\\ = 2 - 2\\ = 0\end{array}\)
And as\(x\)approaches\(0\), the denominator is:
\(\begin{array}{c}1 - \cos x = 1 - \cos 0\\ = 1 - 1\\ = 0\end{array}\)
Thus, \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} + {e^{ - x}} - 2}}{{1 - \cos x}} = \frac{0}{0}\) is again in an indeterminate form.