Apply L’Hospital's rule and simplify the given limit.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 1} \frac{{{x^a} - ax + a - 1}}{{{{(x - 1)}^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{d}{{dx}}\left( {{x^a} - ax + a - 1} \right)}}{{\frac{d}{{dx}}\left( {{{(x - 1)}^2}} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{a{x^{a - 1}} - a}}{{2(x - 1)}}\\ = \frac{{a - a}}{{2(1 - 1)}}\\ = 0\end{array}\)
Since it is \(\frac{0}{0}\) form, L’Hospital's rule can be applied again.
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 1} \frac{{{x^a} - ax + a - 1}}{{{{(x - 1)}^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{d}{{dx}}\left( {a{x^{a - 1}} - a} \right)}}{{\frac{d}{{dx}}(2(x - 1))}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{a(a - 1){x^{a - 2}}}}{2}\\ = \frac{{a(a - 1)}}{2}\end{array}\)
Therefore, the value of \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^a} - ax + a - 1}}{{{{(x - 1)}^2}}}\) is \(\frac{{a(a - 1)}}{2}\).