The identity is \({\cosh ^2}x - {\sinh ^2}x = 1\).
\(\begin{aligned}{\cosh ^2}x - {\sinh ^2}x &= 1 \hfill \\{\sinh ^2}x &= {\cosh ^2}x - 1 \hfill \\|\sinh x| &= \sqrt {{{\cosh }^2}x - 1} \hfill \\|\sinh x| &= \sqrt {{{\sinh }^2}x} \hfill \\\end{aligned} \)
So, \(|\sinh x| = \sqrt {{{\cosh }^2}x - 1} \).
Since, \({|\rm{x| = x}}\) if \({\rm{x}} > {\rm{0}}\).
Substitute, \(\cosh x = \frac{5}{3}\).
\(\begin{aligned}{c}\sinh x &= \sqrt {{{\left( {\frac{5}{3}} \right)}^2} - 1} \\ &= \sqrt {\frac{{25}}{9} - 1} \\ &= \sqrt {\frac{{16}}{9}} \\ &= \frac{4}{3}\end{aligned}\)
Thus, the hyperbolic sine function is, \(\sinh x = \frac{4}{3}\).
The definition of the hyperbolic \({\mathop{\rm cosec}\nolimits} \)function is \({\mathop{\rm csch}\nolimits} x = \frac{1}{{\sin hx}}\).
The definition of the hyperbolic cosec function is \({\mathop{\rm csch}\nolimits} x = \frac{1}{{\sin hx}}\).
\({\mathop{\rm csch}\nolimits} x = \frac{1}{{\frac{4}{3}}}\quad \left( {{\rm{Q}}\sinh x = \frac{4}{3}} \right)\)
Thus, \({\mathop{\rm csch}\nolimits} x = \frac{3}{4}\).