Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find the values of the other hyperbolic functions at \(x\).

Short Answer

Expert verified

The hyperbolic function are \(\sinh x = \frac{4}{3},{\mathop{\rm csch}\nolimits} x = \frac{3}{4},\tanh x = \frac{4}{5},\coth x = \frac{5}{4}\) and \(\sec hx = \frac{3}{5}\)

Step by step solution

01

Given function

The value \(\cos hx = \frac{5}{3}\) and \(x > 0\).

02

The concept of the hyperbolic function

(1) The hyperbolic sine function:\({sinhx = }\frac{{{1{e}^ 1{x}} 1{ - }{1{e}^{1{ - x}}}}}{1{2}}\)

(2) The hyperbolic cosine function:\({coshx = }\frac{{{{e}^{x}}{ + }{{e}^{{ - x}}}}}{{2}}\)

(3) The hyperbolic tangent function:\({tanhx = }\frac{{{sinhx}}}{{{coshx}}}\)

03

Use the formulas and find the hyperbolic function

The identity is \({\cosh ^2}x - {\sinh ^2}x = 1\).

\(\begin{aligned}{\cosh ^2}x - {\sinh ^2}x &= 1 \hfill \\{\sinh ^2}x &= {\cosh ^2}x - 1 \hfill \\|\sinh x| &= \sqrt {{{\cosh }^2}x - 1} \hfill \\|\sinh x| &= \sqrt {{{\sinh }^2}x} \hfill \\\end{aligned} \)

So, \(|\sinh x| = \sqrt {{{\cosh }^2}x - 1} \).

Since, \({|\rm{x| = x}}\) if \({\rm{x}} > {\rm{0}}\).

Substitute, \(\cosh x = \frac{5}{3}\).

\(\begin{aligned}{c}\sinh x &= \sqrt {{{\left( {\frac{5}{3}} \right)}^2} - 1} \\ &= \sqrt {\frac{{25}}{9} - 1} \\ &= \sqrt {\frac{{16}}{9}} \\ &= \frac{4}{3}\end{aligned}\)

Thus, the hyperbolic sine function is, \(\sinh x = \frac{4}{3}\).

The definition of the hyperbolic \({\mathop{\rm cosec}\nolimits} \)function is \({\mathop{\rm csch}\nolimits} x = \frac{1}{{\sin hx}}\).

The definition of the hyperbolic cosec function is \({\mathop{\rm csch}\nolimits} x = \frac{1}{{\sin hx}}\).

\({\mathop{\rm csch}\nolimits} x = \frac{1}{{\frac{4}{3}}}\quad \left( {{\rm{Q}}\sinh x = \frac{4}{3}} \right)\)

Thus, \({\mathop{\rm csch}\nolimits} x = \frac{3}{4}\).

04

Use the formula and find the function

The definition of the hyperbolic cosec function is \(\sec hx = \frac{1}{{\cos hx}}\).

\(\begin{array}{c}\sec hx = \frac{1}{{\frac{2}{3}}}\quad \\{\rm{Q}}\cos hx = \frac{5}{3}\end{array}\)

Thus, sec \(hx = \frac{3}{5}\).

The definition of the hyperbolic tangent function is \(\tanh x = \frac{{\sinh x}}{{\cosh x}}\).

\(\begin{array}{c}\tanh x = \frac{{\frac{4}{3}}}{{\frac{3}{3}}}\quad \\{\rm{Q}}\sinh x = \frac{4}{3}\\\cos hx = \frac{5}{3}\end{array}\)

Thus, \(\tanh x = \frac{4}{5}\).

The definition of the hyperbolic cot function is \(\cot hx = \frac{1}{{\sin hx}}\).

\(\begin{array}{c}\cot hx = \frac{1}{{\frac{4}{3}}}\quad \\{\rm{Q}}\tanh x = \frac{4}{5}\end{array}\)

Thus, \(\cot hx = \frac{5}{4}\).

Therefore, the hyperbolic function are \(\sinh x = \frac{4}{3},{\mathop{\rm csch}\nolimits} x = \frac{3}{4},\tanh x = \frac{4}{5},\coth x = \frac{5}{4}\) and \(\sec hx = \frac{3}{5}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free