Chapter 3: Q17E (page 161)
Determine the value of \({g^{ - 1}}(4)\) if \(g(x) = 3 + x + {e^x}\).
Short Answer
The value of \({g^{ - 1}}(4) = 0\).
Chapter 3: Q17E (page 161)
Determine the value of \({g^{ - 1}}(4)\) if \(g(x) = 3 + x + {e^x}\).
The value of \({g^{ - 1}}(4) = 0\).
All the tools & learning materials you need for study success - in one app.
Get started for free1โ38 โ Find the limit. Use lโHospitalโs Rule where appropriate. If there is a more elementary method, consider using it. If lโHospitalโs Rule doesnโt apply, explain why.
3.\(\mathop {lim}\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \frac{{cosx}}{{1 - sinx}}\).
Prove the identity \(sinh( - x) = - sinhx\).
Determine whether the function\(f(x) = {x^2} - 2x\)is one-to-one.
(a) Determine the value of \({f^{ - 1}}(17)\) if\(f\) is one-to-one and \(f(6) = 17\).
(b) Determine the value of \(f(2)\) if\(f\) is one-to-one and \({f^{ - 1}}(3) = 2\).
Find a formula for the inverse of the function\(y = \ln (x + 3)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.