Chapter 3: Q12E (page 189)
Prove the identity \(cosh(x + y) = coshxcoshy + sinhxsinhy\).
Short Answer
The identity \(\cos h(x + y) = \cos hx\cosh y + \sinh x\sinh y\) is proved.
Chapter 3: Q12E (page 189)
Prove the identity \(cosh(x + y) = coshxcoshy + sinhxsinhy\).
The identity \(\cos h(x + y) = \cos hx\cosh y + \sinh x\sinh y\) is proved.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the value of \({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \sqrt {{x^3} + {x^2} + x + 1} \).
Prove the identity \(coshx + sinhx = {e^x}\).
(A) to determine the function\(f(x) = \frac{1}{{x - 1}},\;x > 1\)is one-to-one.\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in
(B) To determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \frac{1}{{x - 1}}\).
(C) To determine the inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(D) To determine whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)is\(\frac{1}{4}\)using the inverse function.
(E) To sketch: The graph of\(f(x) = \frac{1}{{x - 1}}\)and\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in the same coordinate.
1โ38 โ Find the limit. Use lโHospitalโs Rule where appropriate. If there is a more elementary method, consider using it. If lโHospitalโs Rule doesnโt apply, explain why.
15.\(\mathop {\lim }\limits_{x \to 0} \frac{{x{3^x}}}{{{3^x} - 1}}\).
Sketch the graphs of the function \(y = {e^x},y = {e^{ - x}},y = {8^x}\)and \(y = {8^{ - x}}\) on the same axes and interpret how these graphs are related.
What do you think about this solution?
We value your feedback to improve our textbook solutions.