Chapter 3: Q11E (page 161)
Determine whether the function\(g(x) = \frac{1}{x}\)is one-to-one.
Short Answer
The function \(g(x) = \frac{1}{x}\)is one-to-one.
Chapter 3: Q11E (page 161)
Determine whether the function\(g(x) = \frac{1}{x}\)is one-to-one.
The function \(g(x) = \frac{1}{x}\)is one-to-one.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = {x^3} + 3\sin x + 2\cos x\).
Determine the formula for the inverse of the function\(f(x) = 2 - {e^x}\). Sketch the graph of \(f,{f^{ - 1}}\) and \(y = x\), check whether graphs \(f\) and \({f^{ - 1}}\) reflects about the line \(y = x\).
(A) to determine the function\(f(x) = \frac{1}{{x - 1}},\;x > 1\)is one-to-one.\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in
(B) To determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \frac{1}{{x - 1}}\).
(C) To determine the inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(D) To determine whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)is\(\frac{1}{4}\)using the inverse function.
(E) To sketch: The graph of\(f(x) = \frac{1}{{x - 1}}\)and\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in the same coordinate.
To determine the value of \(\mathop {\lim }\limits_{u \to \infty } \frac{{\left( {\frac{{{\varepsilon ^u}}}{{10}}} \right)}}{{{u^3}}}\).
Find a formula for the inverse of the function \(f(x) = 1 + \sqrt {2 + 3x} \).
What do you think about this solution?
We value your feedback to improve our textbook solutions.