Chapter 3: Q10E (page 145)
Prove the identity \(coshx - sinhx = {e^{ - x}}\).
Short Answer
The identity \(\cosh x - \sinh x = {e^{ - x}}\) is proved.
Chapter 3: Q10E (page 145)
Prove the identity \(coshx - sinhx = {e^{ - x}}\).
The identity \(\cosh x - \sinh x = {e^{ - x}}\) is proved.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the function given by a table of values is one-to-one.
(a) To determine the numerical value of given expression.
(b) To determine the numerical value of given expression.
(A) to determine the function\(f(x) = \frac{1}{{x - 1}},\;x > 1\)is one-to-one.\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in
(B) To determine the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\), where\(f(x) = \frac{1}{{x - 1}}\).
(C) To determine the inverse of the function\(f(x) = 9 - {x^2}\)and state its domain and range.
(D) To determine whether the value of\({\left( {{f^{ - 1}}} \right)^\prime }(2)\)is\(\frac{1}{4}\)using the inverse function.
(E) To sketch: The graph of\(f(x) = \frac{1}{{x - 1}}\)and\({f^{ - 1}}(x) = \frac{1}{x} + 1\)in the same coordinate.
(a) Determine the inverse function \({f^{ - 1}}\). What is the domain and range of \({f^{ - 1}}\).
(b) Determine the formula for \({f^{ - 1}}\) if the formula for \(f\) is given.
(c) How to obtain the graph of \({f^{ - 1}}\) if the graph of \(f\) is given \(f\).
(a) To show the function\(f(x) = {x^3}\)is one-to-one.
(b) The value of\({\left( {{f^{ - 1}}} \right)^\prime }(8)\), where\(f(x) = {x^3}\).
(c) The inverse of the function\(f(x) = {x^3}\)and state its domain and range.
(d) Whether the value of\(\left( {{f^{ - 1}}} \right)(8)\)is\(\frac{1}{{12}}\)by using the inverse function.
(e) To sketch: The graph of\(f(x) = {x^3}\)and\({f^{ - 1}}(x) = \sqrt(3){x}\)in the same coordinate axis.
What do you think about this solution?
We value your feedback to improve our textbook solutions.