Chapter 5: Q9E (page 308)
\(\int\limits_{ - 1}^1 {({x^5} - 6{x^9} + \frac{{sinx}}{{{{(1 + {x^4})}^2}}})dx} \)
Short Answer
The answer is TRUE.
Chapter 5: Q9E (page 308)
\(\int\limits_{ - 1}^1 {({x^5} - 6{x^9} + \frac{{sinx}}{{{{(1 + {x^4})}^2}}})dx} \)
The answer is TRUE.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function \(y = \int_{\sin x}^{\cos x} {{{\left( {1 + {v^2}} \right)}^{10}}} dv\)using the Part 1 of the Fundamental Theorem of Calculus.
(a) Find the average value of \(f\) on the given interval.
(b) Find \(c\) such that \({{\rm{f}}_{{\rm{ave}}}}{\rm{ = f(c)}}\)
(c) Sketch the graph of \(f\)and a rectangle whose area is the same as the area under the graph of\(f\).
\({\rm{f(x) = (x - 3}}{{\rm{)}}^{\rm{2}}}{\rm{,}}\left( {{\rm{2,5}}} \right)\)
Evaluate the integral by making the given substitution.
\(\int {\frac{{{\rm{dt}}}}{{{{{\rm{(1 - 6t)}}}^{\rm{4}}}}}} {\rm{,}}\;\;\;{\rm{u = 1 - 6t}}\).
Evaluate the integral.
\(\int_{\pi /4}^{\pi /3} {{{\csc }^2}} \theta d\theta \)
Find \(\int_0^5 f (x)dx\) if
What do you think about this solution?
We value your feedback to improve our textbook solutions.