Chapter 5: Q9E (page 289)
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Short Answer
The value of the integral is \({\rm{36}}\)
Chapter 5: Q9E (page 289)
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
The value of the integral is \({\rm{36}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate\(\int_\pi ^\pi {si{n^2}} xco{s^4}xdx\)
Evaluate the integral.
\(\int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ + 1}}{{\rm{0}}^{\rm{x}}}} \right)} {\rm{dx}}\).
Find the derivative of the function \(h(x) = \int_2^{\frac{1}{x}} {{\mathop{\rm arc}\nolimits} } {\rm{ tan t dt}}\) using the Part 1 of The Fundamental Theorem of Calculus.
Find the derivative of the function \(y = \int_{\sin x}^{\cos x} {{{\left( {1 + {v^2}} \right)}^{10}}} dv\)using the Part 1 of the Fundamental Theorem of Calculus.
Evaluate the integral.
\(\int_{\rm{1}}^{\rm{2}} {\frac{{{{{\rm{(x - 1)}}}^{\rm{3}}}}}{{{{\rm{x}}^{\rm{2}}}}}} {\rm{dx}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.