Chapter 5: Q9E (page 306)
Evaluate the indefinite integral.
\(\int {{{{\rm{(1 - 2x)}}}^{\rm{9}}}} {\rm{dx}}\).
Short Answer
The solution of given integral\(\int {{{(1 - 2x)}^9}} dx\) is \( - \frac{1}{{20}} \cdot {(1 - 2x)^{10}} + C\).
Chapter 5: Q9E (page 306)
Evaluate the indefinite integral.
\(\int {{{{\rm{(1 - 2x)}}}^{\rm{9}}}} {\rm{dx}}\).
The solution of given integral\(\int {{{(1 - 2x)}^9}} dx\) is \( - \frac{1}{{20}} \cdot {(1 - 2x)^{10}} + C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
Evaluate the integral.
\(\int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ + 1}}{{\rm{0}}^{\rm{x}}}} \right)} {\rm{dx}}\).
Find the derivative of the function \(h(x) = \int_2^{\frac{1}{x}} {{\mathop{\rm arc}\nolimits} } {\rm{ tan t dt}}\) using the Part 1 of The Fundamental Theorem of Calculus.
Evaluate the integral by interpreting it in terms of areas.
\(\int_0^{10} | x - 5|dx\)
Evaluate the indefinite integral\(\int {\frac{{\cos \left( {{\pi \mathord{\left/
{\vphantom {\pi x}} \right.
\kern-\nulldelimiterspace} x}} \right)}}{{{x^2}}}} dx\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.