Chapter 5: Q8E (page 308)
If f and g are differentiable and \(f(x) \ge g(x)\)for \(a < x < b\),then \(f'(x) \ge g'(x)\) for \(a < x < b\).
Short Answer
The answer is FALSE.
Chapter 5: Q8E (page 308)
If f and g are differentiable and \(f(x) \ge g(x)\)for \(a < x < b\),then \(f'(x) \ge g'(x)\) for \(a < x < b\).
The answer is FALSE.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integral
\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)
Evaluate the integral
\(\) \(\int\limits_{{\rm{ - 1}}}^{\rm{1}} {{\rm{t(1 - t}}{{\rm{)}}^{\rm{2}}}{\rm{dt}}} \)\(\)
On what interval is the curve \({\rm{y = }}\int\limits_{\rm{0}}^{\rm{x}} {\frac{{{{\rm{t}}^{\rm{2}}}}}{{{{\rm{t}}^{\rm{2}}}{\rm{ + t + 2}}}}} \)concave downward?
Evaluate the integral.
\(\int_0^1 {\cosh } tdt\).
Given that \(\int_0^1 3 x\sqrt {{x^2} + 4} dx = 5\sqrt 5 - 8\), what is \(\int_1^0 3 u\sqrt {{u^2} + 4} du?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.