Chapter 5: Q8E (page 306)
Evaluate the indefinite integral.
\(\)\(\int {{x^2}} {e^{{x^3}}}dx\)
Short Answer
The value of \(\int {{x^2}} {e^{{x^3}}}dx\)is\(\frac{1}{3}{e^{{x^3}}} + C\).
Chapter 5: Q8E (page 306)
Evaluate the indefinite integral.
\(\)\(\int {{x^2}} {e^{{x^3}}}dx\)
The value of \(\int {{x^2}} {e^{{x^3}}}dx\)is\(\frac{1}{3}{e^{{x^3}}} + C\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the indefinite integral\(\int {\frac{{{{(\ln x)}^2}}}{x}} dx\).
In Example 2 in Section 5.1 we showed that \(\int_0^1 {{x^2}} dx = \frac{1}{3}\). Use this fact and the properties of integrals to evaluate \(\int_0^1 {\left( {5 - 6{x^2}} \right)} dx\).
Evaluate the indefinite integral\(\int {u\sqrt {1 - {u^2}} du} \).
Evaluate the integral.
\(\int_0^{\pi /4} {\frac{{1 + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }}} d\theta \).
Evaluate\(\int_\pi ^\pi {si{n^2}} xco{s^4}xdx\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.