Chapter 5: Q7E (page 289)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)
Short Answer
The value of the integral is\({\rm{5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 1}}\)
Chapter 5: Q7E (page 289)
Evaluate the integral
\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)
The value of the integral is\({\rm{5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 1}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Find the derivative of the function \(F(x) = \int_x^{10} {\tan } \theta d\theta \) using Part 1 of the Fundamental Theorem of Calculus.
Evaluate the indefinite integral.
\(\int {{{{\rm{(1 - 2x)}}}^{\rm{9}}}} {\rm{dx}}\).
Evaluate the indefinite integral.
\(\int x \sin \left( {{x^2}} \right)dx\)
Find the derivative of the function \(y = \int_0^{\tan x} {\sqrt {t + \sqrt t } } dt\) using Part 1 of The Fundamental Theorem of Calculus.
What do you think about this solution?
We value your feedback to improve our textbook solutions.