Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the integral

\(\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} \)

Short Answer

Expert verified

The value of the integral is\({\rm{5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 1}}\)

Step by step solution

01

Finding General antiderivative

Tofindthe general antiderivative using the indefinite integrals

\(\)\(\begin{array}{l}\int {{{\rm{e}}^{\rm{x}}}{\rm{dx = }}{{\rm{e}}^{\rm{x}}}{\rm{ + C}}} \\\int {{\rm{sinxdx = - cosx + C}}} \end{array}\)

and ignoring (just for the moment) the boundaries of integration.

Now

\(\begin{array}{c}\int {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx}}} {\rm{ = 5}}\int {{{\rm{e}}^{\rm{x}}}{\rm{dx + 3}}\int {{\rm{sinxdx}}} } \\{\rm{ = 5}}{{\rm{e}}^{\rm{x}}}{\rm{ - 3cosx + C}}\\{\rm{ = F(x)}}\end{array}\)

We will leave out the arbitrary constant C, since it cancels out when calculating a definite integral.

02

Assigning final value.

Therefore from the evaluation theorem,

\(\begin{array}{c}\int\limits_{\rm{0}}^{\rm{\pi }} {{\rm{(5}}{{\rm{e}}^{\rm{x}}}{\rm{ + 3sinx)dx = }}\left( {{\rm{5}}{{\rm{e}}^{\rm{x}}}{\rm{ - 3cosx}}} \right)} _{\rm{0}}^{\rm{\pi }}{\rm{ = (5}}{{\rm{e}}^{\rm{\pi }}}{\rm{ - 3cos\pi ) - (5}}{{\rm{e}}^{\rm{0}}}{\rm{ - 3cos0)}}\\{\rm{ = (5}}{{\rm{e}}^{\rm{\pi }}}{\rm{ - 3( - 1)) - (5(1) - 3(1))}}\\{\rm{ = (5}}{{\rm{e}}^{\rm{\pi }}}{\rm{ + 3) - (5 - 3)}}\\{\rm{ = 5}}{{\rm{e}}^{\rm{\pi }}}{\rm{ + }}{{\rm{1}}^{}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free