Chapter 5: Q7E (page 306)
Evaluate the indefinite integral.
\(\int x \sin \left( {{x^2}} \right)dx\)
Short Answer
The value of \(\int x \sin \left( {{x^2}} \right)dx\)is \(I = - \frac{1}{2}\left( {\cos {x^2}} \right) + c\).
Chapter 5: Q7E (page 306)
Evaluate the indefinite integral.
\(\int x \sin \left( {{x^2}} \right)dx\)
The value of \(\int x \sin \left( {{x^2}} \right)dx\)is \(I = - \frac{1}{2}\left( {\cos {x^2}} \right) + c\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the average value of the function \(g(x) = \cos x\)in the interval \(\left( {0,\frac{\pi }{2}} \right)\)
To sketch the rough graph of \(g\).
Find the average value of \({\rm{f}}\)on\(\left( {{\rm{0,8}}} \right)\).
Evaluate the integral.
\(\int\limits_{\rm{1}}^{\rm{4}} {\left( {\frac{{{\rm{4 + 6u}}}}{{\sqrt {\rm{u}} }}} \right){\rm{du}}} \)
Evaluate the integral
\(\int\limits_{{\rm{ - 2}}}^{\rm{0}} {\left( {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t}}} \right)} {\rm{dt}}\)\(\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.